~—

Elmo'ma, Line

Our Best Ever Motion Solutions

G-MAS - Gold Maestro
Software User’s Manual

March 2011 (Ver. 1.0)

a
Elmo

Motion Control

www.elmomc.com

http://www.elmomc.com/�
http://www.elmomc.com/�
http://www.elmomc.com/�

G-MAS — Gold Maestro Software User’s Manual Software User Manual

1-2

XXXXXXXXXXXX(0.01)

Important Notice

This document is delivered subject to the following conditions and restrictions:

This document is copyrighted and all rights are reserved by EImo Motion Control Ltd. This
product may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced
to any electronic medium or machine-readable form without prior consent, in writing, by EImo
Motion Control Ltd.

This document contains proprietary information belonging to EImo Motion Control Ltd. Such
information is supplied solely for assisting users of Gold Maestro Network Motion Controller.

The text and graphics included in this document are for the purpose of illustration and reference
only. The specifications on which they are based are subject to change without notice.

Elmo Motion Control and the EImo Motion Control logo are trademarks of ElImo Motion Control
Ltd.

Document no. XXXXXXXXXXXXXXXXX
Copyright © 2011

Elmo Motion Control Ltd.

All rights reserved.

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

Table of contents

Chapter 1: About the G-MAS and thismanual...................ccoooii e, 1-3
1.1, Whatisthe G-MAS ... e 1-3
O C YN =T (U =P 1-4
1.3. What the Document Covers and How to Use Itccceuuiiiiiiiiiiiiiiiiiieei e, 1-5

Chapter 2: Just Before Starting Upc.oiiiniiiiii e 2-6
2.1. Preparing YoUr COMPULETccuuiiiieiie e e eees 2-6
2.2. Using the Manual’'s EXamplesoiiiuiiiiiiii e 2-6

Chapter 3: Programming Practices and Guidelinesccccoiiiiiiiiiiii e, 3-9
3.1. Projects and fileS. ... e 3-9

3.1.1. Project Location and Namingcoeeviiiiiiiii i 3-10
3.1.2. ProJECt’S FIleS .cvne e 3-11
3.1.3. Project’s Description Filescoeeuiiiiiiiiiiicee e 3-11
3.2. Functions, Variables and ConsStants.........cccuiiuiieiiiiieiieieeee e 3-12
3.3, Cand Header FIleS.....ccoeuuiiiiii et e 3-12
3.4, Wrapper fUNCLIONS ..uucie e e eaaes 3-13
3.4.1. Hiding Complex and/or Not Important Code Segments................... 3-13
3.4.2. Hiding Repeated Segments of Code.........ccceeeviiiiiiiiiiiiiiiiiiiieeeeins 3-14
3.4.3. Providing Easier INterfacescoovvuiiiiiiiiiii e 3-14
3.5. Implementing Maching SEQUENCES.........cccuuiiiiiieiiie e 3-15
3.5.1. The main() program struCture........cccoeeuiiiiieiiiie e 3-17
3.5.2. The MachineSequences() FUNCLION..........ccuviiieiiiiiiieicce e, 3-18
3.5.3. The MachineSequencesTimer() function..............ccooeeiviiiiiiieeeennn. 3-20
3.6. [=10 e |17 oY= T o 3-28
T Y-V 1 o] L= oo Yo 3-30

Chapter 4: G-MAS software structure and interfaces..............cccccoeviiiiiiiiiiii i, 4-46
O O N o 1= o) PP PP PP TPPPPUPPRPPR 4-47
4.2. The G-IMIAS et e e e et e et e e e e e e 4-49

4.2.1. Function Blocks INterfaces........oooueeuuiiiiiiiiiieei e 4-50

4.2.2. Multi-Axis Motion Control Core Structure........cooeeevveeveiienieiineennen, 4-50

G-MAS — Gold Maestro Software User’s Manual Software User Manual

4.3. ’)The device NETWOTKooiiiei e 4-53
4.4, Additional T00IS. ... e e 4-54
4.4.1. NS AN T 1o T 4-54

4.4.2. IP Configuration over USBcoouiiiiiiiiiii e 4-54

Chapter 5: The XYZ robot examplecoonoiiniiii e 5-55
Chapter 6: Further Programming Examples...............ccooiiiiiiii i 6-56

Chapter 7: PC Software Installation and howtouse..............ccoooiiiiiii i 7-57

G-MAS — Gold Maestro Software User’s Manual Software User Manual
1-3

XXXXXXXXXXXX(0.01)

Chapter 1: About the G-MAS and this manual

This chapter describes the G-MAS product and the organization of this manual. Persons beginning to
understand the G-MAS and program it, should read this manual carefully. However, experienced
G-MAS users may omit this chapter.

1.1. Whatis the G-MAS

The Gold Maestro — G-MAS is an advanced multi-axis machine controller. o |0 Y

It is a programmable control unit, with built-in, ready-to-use, standardized
functionalities for communications, motions, emergencies, timing, events and all
that is required (and desired) to implement a complete multi-axis motion control
system.

1 1 I &
'—m—le‘vW -t
\3

-

A\
“x

The figure below presents the structure of a motion control
system based on the G-MAS and EImo’s digital drives. This
system is based on the following three layers:

e Host computer (or PLC or HMI Panel)
o G-MAS

e Devices (Digital Drives, I/O controllers, network encoders ...)

The Gold Distributed Network
Elmo's Motion Control System Solutions

HMI Panel PLC

Elmo's §
Application (el
Studio A\ .

(EAS) g Ethernet

[TCP/IP, Ethernet/IP,
Madbus, Telnet, FTP, DHCP)

Elmo's Gold Maestro 0
K 3
Network Motion Controller \:f/

Up to 100 Axes EtherCAT™

Elmo’s Gold Drive

Modules
(Integrated

Gold Duo Gold GoldSolo GoldSolo GoldSolo GoldDC Gold El“‘l‘;': ek
DC Whistle Whistle Guitar Trombone Trombone Whistle

= - ‘,‘ :Z'i Elmo's Gold
'Z'j 'J :'j ? :‘j ?& tj pe g L4 Drive Integrated
v 2y 2 Solutions
< 2
Gold Gold Gold
Whistle Guitar Trombone
inside inside inside

The machine’s host computer (or PLC, HMI panel) typically executes the interfaces to the machine
operator and performs high-level management and machine algorithms, as necessary.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
1-4

XXXXXXXXXXXX(0.01)

Digital servo drives control and drive motors, with each drive generally responsible for a single axis
(control, motions, safety, limits, etc.), as well as some 1/Os that may be connected to the digital servo
drive. With EImo intelligent digital servo drives, each drive can be programmed to perform simple
and advanced processes, which is only limited to axis level process (in contrast to machine, or multi-
axes level).

I/O controllers and other devices can be added to the device network.

The host computer (or PLC, HMI panel) is responsible for user interfaces and high-level machine
processes, whereas the digital servo drives (and 1/Os controllers) execute axis or /0 level processes.
Therefore, an intermediary layer is necessary to perform the machine’s sequences and multi-axis
synchronized motions. This is exactly where the G-MAS comes in.

The G-MAS is located in the intermediary layer. It receives high-level commands from the host
computer, performs the required machine sequences, calculates multi-axis motions and,
opportunely, communicates via the device network to synchronously send commands to each axis.
Obviously, the G-MAS also collects statuses from the network devices and in turn sends its own
statuses to the host computer.

From the network devices view, the G-MAS is important, since each network device views only a very
narrow (axis, I/0) portion of the overall system and therefore cannot create or control overall system
sequences or multi-axis synchronized motions. The network devices require a device like the G-MAS
to take this responsibility.

From the host computer (or PLC, HMI Panel) view, the G-MAS is not as important, as in theory, one
can implement all the functions of the G-MAS into the host computer. However, this entails a variety
of significant drawbacks e.g. huge development time, significant risks, non-modular implementation,
“inventing the wheel” etc. that are easily and elegantly solved using the G-MAS.

With its turnkey, in-built functionality (standard implementation of: PLCopen motions, Ethernet
communications, CANopen, CANopen over EtherCAT, etc.) and support for C user programs, to easily
implement a multi-axis motion control system, you only need to write your first C program for the G-
MAS. This is probably why you are now reading this manual...

1.2. G-MAS Features

The following presents some of the G-MAS features. You may refer to EImo’s website at
www.elmomc.com for additional detailed information and brochures.

e High performance, distributed multi-axis network controller, with real-time extension of the
Linux operating system.

e Controls up to 100 axes over device network with a high level of synchronization and accuracy.
e Host communication channels and protocols:

= Ethernet, TCP/IP, UDP (fast binary protocols, MODbus, Ethernet/IP, Telnet, FTP, HTTP)

= USB2.0
e Device networks (fieldbuses) and protocols:

= EtherCAT real-time device networking (CoE, Distributed clock), or:

http://www.elmomc.com/�

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

= CANopen: DS-301, DS-305, DS-401 (/0 device profile), DS-402 (drive and motion control
device profile)

e Built-in functional block libraries:
= Communication with host
= CANopen over CAN and EtherCAT
= PLCopen motion
= Events
= Datarecording
e Programming:
= Native application 'C' programming on the target
= |EC61131-3, PLCopen (future feature)
e Package and power supply:
= Very compact, space saving package. The Gold Lion for embedded military applications.
= DCpowered: 14V to 196 V.

It is important to note that one of the main criteria that guided the G-MAS development (together
with all EImo’s Gold family products) was to use market-leading standards wherever possible.
Furthermore, each standard was accurately implemented, ensuring mandatory complete
implementation of the standard. With Elmo’s Gold product family, this can be found, for example, in
the host communication (MODbus, Ethernet/IP), Device Network (CANopen, CANopen over
EtherCAT), safety, PLCmotion library, I/Os interface circuits, etc.

1.3. What the Document Covers and How to Use It

This manual is organized to create a progressive path for the user starting from the G-MAS basics to
gradually achieve the potential for advanced and complex systems programming.

The manual begins explaining the G-MAS structure and programming guidelines and continues with a
detailed explanation of an Application program written for an XYZ robot.

The explanation starts with the top-level code structure and later, systematically, immerses into the
code details. Therefore, for beginners, it is recommended to read this manual chapter-by-chapter.

The manual and its code examples are organized to allow the reader to learn, chapter by chapter,
firstly about the G-MAS functions and ease of use, and then progressively, about the details of
implementation, with increasing details revealed in later chapters or explanation.

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

Chapter 2: Just Before Starting Up

This chapter presents the required preparations before you can start using the G-MAS and its PC
software environment.

In addition, it explains how the incorporated examples relate to EImo’s demo suitcase, and how they
can be adapted to match your specific system.

This chapter must be read, and the preparations described within, implemented, to be
properly proficient in operating the G-MAS and developing user programs for it.

2.1. Preparing Your Computer

The PC software environment for the G-MAS includes the EAS (ElImo Application Studio) and the C
programming development environment. These application modules must be installed to be able to
operate with the G-MAS.

The EAS is EImo’s setup and maintenance application for the Gold line products, including the G-MAS
and Gold Drives. As a G-MAS user, you will need this application to configure your system (network,
devices, etc.), communicate with the G-MAS, and to perform a variety of features incorporated
within EAS, e.g. to create, record and display multi-axis motions.

The C programming development environment is necessary to develop (write, download, debug) C
programs for the G-MAS.

Please refer to Chapter 7: PC Software Installation and how to use for details regarding the
installation of the required G-MAS software process, and how to use these software modules.

Please continue using this manual only after properly installing the applications and understanding
how to use them. The remainder of this manual assumes that the user is familiar with the application
environments.

2.2. Using the Manual’s Examples

The entire C programs examples (unless specifically mentioned otherwise) included within this
manual were developed for, and tested with EImo’s demo suitcase. This suitcase consists of a G-MAS
and two Elmo digital servo drives (and motors) connected to it over a device network.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
2-7

XXXXXXXXXXXX(0.01)

The Gold Line demo suitcase includes two Gold line digital servo drives connected to the G-MAS over
EtherCAT while the SimpllQ Line demo suitcase includes two SimpllQ drives connected to the G-MAS
over the CAN bus.

Therefore, the examples provided within this manual are adjusted to either configuration, whether
Gold or SimpllQ demo system, and is mentioned within each example. However, not all examples
may work for a different system configuration.

It is therefore recommended to consider purchasing of a demo suitcase (Gold or SimpllQ, depending
on your needs) for conveniently practicing this manual’s examples. Please address your local EImo’s
sales channel to order a demo suitcase.

If you prefer to use your own system for practicing this manual’s examples, you will need to slightly
modify them according to the structure of your own system. Use the guidelines described within the
following the table to properly modify this manual’ examples.

Necessary modifications for Necessary modifications for examples

Your System Structure ; i
ur Sy uctur examples written for CAN written for EtherCAT

Resource file that represents the
system.

Should call the GetCommStatistics()
APl in order to check that the network

None setup is OK. This is instead of
NetworkInfo() which is for CAN.
Change operation mode to Cyclic
Position mode and not Interpolated
Position.

G-MAS with 2xSimpllQ
drives over CANbus

G-MAS with 1xSimpllQ drive New resource file. Or change the As above plus the changes to the left
over CANbus second axis to virtual mode. for the single axis.

G-MAS with NxSimplIlQ
drives over the CAN bus As above As above

(N>2)

Currently, we use interpolation
G-MAS with 2xGold drives mode, as defined in DS402 ver.
over the CAN bus Il. The new standard uses cyclic
position instead.

Currently, we use interpolation mode,
as defined in DS402 ver. Il. The new
standard uses cyclic position instead.

G-MAS — Gold Maestro Software User’s Manual

Software User Manual
2-8

XXXXXXXXXXXX(0.01)

Necessary modifications for

Your System Structure .
¥ examples written for CAN

Necessary modifications for examples
written for EtherCAT

G-MAS with 1xGold drive

over the CAN bus 8 LSO

G-MAS with NxGold drives

over the CAN bus (N>2) As above

As above

As above

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-9

XXXXXXXXXXXX(0.01)

Chapter 3: Programming Practices and Guidelines

This chapter describes the practices and guidelines used by EImo’s team to developed examples and
application programs for the G-MAS. These guidelines are based on worldwide common C
programming practices with some expansions required to create a complete set of guidelines and
concepts for the G-MAS C programming

Most of the guidelines do not really affect the execution of the code (do not directly improve code
size, or speed, or performance in general), so, why is it so important to use them? For the following
reasons:

1. Most of the guidelines relate to code readability, portability, ease of development, and
debugging. This means that your development process is assumed faster and easier with
these guidelines.

2. Some of the guidelines, especially those that relate to programming concepts, are more
than just “how to make my code clearer”. They really affect the ease of implementation,
execution performance, and the time-to-market of your project. One of these guidelines is
the concept of States Machine programming, as you will see later on this manual. It is one
of few possible methods to implement machine sequences, and practically, it proved itself
the simplest and the most successful method to use.

3. You can better use the examples and Case Studies provided by Elmo, as they are all written
according to these guidelines and programming concepts.

4. And most important, to enable the best support you can get from Elmo. Application
programs may become large and quite complex for significant projects. Using your own
programming concepts, as good as they surely are, will make it much more difficult for
Elmo’s support engineers to perform in-depth analysis. You may need to send us your code,
or parts of it, at some point in the future, and it may become impossible for us to analyze
and track its details unless it is written according to the guidelines and concepts described
in this chapter.

It is therefore strongly recommended to use these guidelines, practices and
programming concepts when developing your own C programs for the G-MAS.

3.1. Projects and files

This section describes some guidelines regarding organization and naming of projects and files.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-10

XXXXXXXXXXXX(0.01)

3.1.1. Project Location and Naming

All projects (applications) shall be located under the C:\GMAS\MyGMASProjects directory, which is
created during the software environment installation process. The root directory C:\ can be replaced
with the actual name of your disk.

Each project should be located within a specific directory under the above location, with only one
project within a given directory.

The name of a project’s directory should reflect the name of the project (application). For example,
from Elmo’s set of C programs examples: “C_ReadDigitallnput” (see screen snapshot below). Note
that the name of the project’s directory respects the following guidelines:

e |t reflects the project/application contents.
e |t has no spaces.
e Ifit consists of few words, each word starts with a Capital letter for easy reading.

e Finally, for convenience only, Elmo adds a prefix to the project’s name (in this case: “C_") to force
the list of the projects to appear in a given order within Windows explorer. This is done in order
to organize our built-in examples in a desired order for the readers of this manual. You are not
required to add this prefix (see customer’s project WalkingRobotPrototype within the screen
snapshot below).

The above three guidelines for naming project’s directory, are also applicable for naming all of the
project’s C and H files. The name must reflect the content of the file, include no spaces and each
word in the name should start with a capital letter, e.g.: ReadDigitallnput.c

G-MAS — Gold Maestro Software User’s Manual Software User Manual

3-11
XXXXXXXXXXXX(0.01)
% C:\GMASWMYGMASCProjects (=13
File Edit YView Favorites Tools Help F
@Back * & ? /.) Search || Folders -
Projects directory / L CGMAS|MyGMASCProjects he E’ Z
re=f.metadata () WallkingRobotPrototype < Wwalking Robot project
A _Template
1) B_Helloworld

Read Digital Input project /_.«eadDigil:aIInput

__)D_PositionVelocityMapping
(_JE1_NC_JogSingeAxisMovement
_JE_NC_PTPSingeAxisMovement
__JF_NonMC_PTPSingeAxisMovement
_1GZ_Modbus
_JH1_NC_SynchCircleAndLinearMotion
JHZ2_NC_SynchlinearMotion
_JH_NC_synchCircleMotion

I _NC_SinchCircleMotion2

) J_Homing

__JK_TimeEvent
_JL_NonNC_HomePTPSingeAxis
_JR_DS401WithEventExample

3.1.2. Project’s Files

Each project will be based on a main C file, respecting the following guidelines:

e Its name will be identical to the project’s directory name (without the prefix, if used). For
example: ReadDigitallnput.c

e It will include the main() function, which will be the first function within the file.

Each project will also include a main header (*.h) file, which will be also named with the name of the
project (e.g. ReadDigitallnput.h) and will include all definitions which are specific for the project
(such as constants, functions prototypes, etc.).

In addition, the developer can create additional code and header files, as may be needed to properly
organize the various C functions. All files should be named using the above file naming guidelines.

3.1.3. Project’s Description Files

Elmo highly recommends that an application programmer should add some files to a project’s
directory that explain the project goals, tasks, methods of implementation, etc. It can be a simple
readme file or files that are more complex (machine specification, motion sequences, machine’s ATP,
design reviews for the implementation, etc.). This information, if supplied with the overall project
code files (for a new member in the development team, and/or for EImo’s staff for support, etc.) can
significantly improve processes e.g. learning, support for the project, etc.

Please refer to the project’s description files included with each of EImo’s examples (located at
C:\GMAS\MyGMASCProjects as part of the Development Software installation process) for examples
of such files.

G-MAS — Gold Maestro Software User’s Manual Software User Manual

3-12

XXXXXXXXXXXX(0.01)

3.2. Functions, Variables and Constants

The naming and usage of functions, variables and constants should abide by the following guidelines:

Functions should be named similarly to files. For example: MainTimer().

Variables should also be named similarly, but should be preceded with the variable type in lower
case, according to the table below. For example: iSpeed can be the name of an integer variable
holding a value of speed.

Type Prefix Example
Integer i iMotorSpeed
Unsigned integer ui uiUpperLimit
Long I IPosition
Unsigned long ul ulLimitPosition
Short 3 sAnaloglnput
Unsigned short us usDigitallnputs
Char C cErrorString
Unsigned char uc ucASClICode
Enum e eTargetPositions
Struct st stHalt

Constants shall be named using the following format: MY_CONSTANT (all capitals, “_” between
each word).

Global variables are allowed and recommended for variables accessed by more than one
function. They should be defined at the top of a C file (in most cases, the project’s main C file).
The Global variable’s name should have an additional “G” at its prefix, e.g. glPosition,
gcErrorString. This will indicate to the programmer that the variable is Global.

3.3. C and Header Files

The code within the C files should respect the following guidelines:

The main project’s C file should start with some comments lines describing the application.

Each function should be preceded with some comments lines, providing as much details as
possible about the function (what it does, input and output parameters, who wrote it, version,
etc.).

The main() function should be the first function within the project’s main C file. It should be
typically defined as: Void main()

meaning, no arguments are expected when executing the project and no returned value to the
operating system upon exiting the application.

In case arguments should be passed to the application code from the operating system, or if the

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-13

XXXXXXXXXXXX(0.01)

application should return a value to operating system upon exiting, please refer to the relevant
example included within the examples directory (c:\GMAS\MyGMASCProjects).

e ACfile should “include” only the header files necessary.

e The code should not include numbers. Constants should be defined within the relevant header
file and the value of the constant should be defined only within the header file. For example:
HOMING_SPEED.

e This includes values like “0” and “1”. Define OK and NOT_OK (and/or similarly, like TRUE, FALSE).
e Code should be vertically aligned and properly nested.

e Use TABS, not spaces to align the code vertically.

e Opening and closing brackets (“{“ and “}”) should be each written in a separate line.

e Comments (files and functions titles, in-line comments, end of line comments, etc.) should use
the format (or style) as shown with the sample code at the end of this chapter.

3.4. Wrapper functions

Wrapper functions files are files that hold a set of logically related functions (actually, a library of
functions). Each function is written to “hide” a relatively complex process/code with a simple
interface for the programmer. An example can be a Wrapper Functions file that will include a set of
functions for motion. It may contain, for example, a function like MyMoveAbsolute(dSpeed,
dPosition). This function has a very simple interface (can be easily used to create a motion, as all you
need to enter are values for Speed and Position), but internally, it will use the less simple PLCopen
Motion function, including parameters initializations, validity checks, etc.

Wrapper Functions help to keep the main code cleaner and more elegant. While reading (and
debugging/modifying) the main code, one would like to easily see the implemented machine
sequence (program flow) and this can be done only if the details of the code are hidden within
function calls.

A call to a function named “MMC_InitSystem(...)” will be much clearer than placing the detailed code
of the system initialization (axes, communication etc.) online within the main code. Therefore, if
necessary, the developer can perform in-depth analysis on the detailed code in the wrapper function.

Wrapper Functions can be used for various proposes:
e Hiding Complex and/or Not Important Code Segments
e Hiding repeated segments of code

e Providing easier interfaces (“shortcuts”) for repeated calls to functions

3.4.1. Hiding Complex and/or Not Important Code Segments

When programming a complex synchronized distributed system, the overall code will typically
include relatively complex, long and “non-interesting” segments of code. These segments generally
deal with the detailed implementation of the system initialization, management, error handling,
termination etc. This code is not necessarily related to the main goal of the project — to perform the
machine sequence.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-14

XXXXXXXXXXXX(0.01)

If these segments of code remain within the main code, the main code will become too complex,
blocking reasonable reading and tracking of what is most important; the implementation of the
machine sequences and logic.

Wrapper Functions can be used to hide these segments of code. Such Wrapper Functions are
supplied by ElImo so that our examples can be read and understood much easier.

3.4.2. Hiding Repeated Segments of Code

Repeated segments of code, even if not complex, and even if important to understand the program
flow (the machine sequences), can be hidden inside a Wrapper Function to minimize the main code
length.

3.4.3. Providing Easier Interfaces

Some of the built-in G-MAS Function Block functions have complex interfaces, i.e. a function with
many arguments, with some of these arguments also complex structures. This complexity is
necessary to maintain compatibility with standards like PLCopen Motion and to enable full operation
of the function.

However, in most situations, and your case may be one of them, the application does not need full
operation of the Function Block, but only needs a small subset of the Function Block interfaces.
Under these circumstances, the programmer (or EImo within its examples) may define a new
function that will have a simple interface with the program and will internally assume some defaults
for the remaining functions arguments.

An example can be a simple motion function (to be typically located within a Wrapper Functions file
that will include many functions for simple motions), e.g. MoveAbs(iPosition).

This function accepts only one argument, the desired position, and creates a motion to this target
position, using the full mechanism of the PLCopen Motion Function Blocks. It will assume default
values for the additionally needed arguments, like speed and acceleration, or will keep the values
used recently — depending on the actual coding of the MoveAbs() function (this of course must be
clearly documented for the users of the wrapper function).

Assuming that the user understands what are the default actions taken by the wrapper function, it is
much easier to call the MoveAbs() than the standard PLCopen Move Absolute function.

Another example may be:
int iEndMotionReason = MoveAbsWaitEndMotion(iPosition)

This is clearly a function to create motion and to wait to its end (whatever is the reason; reaching the
target, limit, error, ...). The function returns only when the motion ends, returning the reason for the
end of motion.

In general, Wrapper Functions are libraries of functions that are aimed to simplify the
writing and the reading of the main code — the machine sequences.

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

Elmo supplies a set of Wrapper Functions files as part of its set of examples. You can define and

create your own set of Wrapper Functions files (starting from scratch or based on one of EImo’s

examples), as suitable for your projects and style of writing.

Wrapper Functions files should follow the following guidelines:

Elmo’s supplied Wrapper Functions files should not be modified. Instead, if modifications are
necessary, copy the file to a new file and modify it.

Each Wrapper Functions file should include a set of functions that are logically related. Each
function should have a simple user interface.

Each Wrapper Functions file should be named to reflect its contents. For example:
SimplifiedSynchronizedMotions.c.

Each Wrapper Functions C file should have a header file (*.h), with the same name. The header
file will include definitions relevant to the Wrapper Functions file, as well as prototypes for the
wrapper functions included within it.

The general (not example specific) Wrapper Functions files that are supplied by Elmo, are located
under the G:\GMAS\GMASCWrapperFunctionsFiles.

Additional Wrapper Functions files that are more specific to a given project/application should be
located within the project directory.

If a Wrapper Function acquires a number of assumptions (default values, keeping previous
values, etc.), these assumptions must be clearly documented for the user.

It is strongly recommended that a Wrapper Function (unless it was written to a very specific and
fixed project) will not include default values for parameters. An easy mistake can be, for
example, to assume a value of 100000 (for example) for a simplified motion function. This may
work perfectly for a given example, but will not be suitable for a future example, when no one
will remember this default decision. Other solutions are recommended (for example, to include a
Worapper Function within the file that will be used to initialize all this default values from the
main code). Something like:

InitMotionsWrapper(iSpeed, iAcceleration, iDecelaration, iMode, iSmoothing, ...)

Then the programmer can freely use MoveAbs(iPosition) etc.

3.5. Implementing machine sequences

A program that handles machine sequences should answer the following requirements:

Capable to handle a number of sequences in parallel.

For example, assuming that the G-MAS should handle a machine with three axes (e.g. X, Y and Z)
together with an Automatic Loader that should load and unload the object to/from the machine,
itself consisting of 4 axes.

Each of these sub-assemblies should be controlled in parallel, having sequences that are
independent while necessarily synchronized.

A User Application at the G-MAS should be able to execute both sequences (the machine and the
Loader) in parallel, and to synchronize them, when synchronization is required.

G-MAS — Gold Maestro Software User’s Manual Software User Manual

3-16

XXXXXXXXXXXX(0.01)

Capable to handle background system processes such as validation read, and handle statuses,
emergencies, etc.

Many tasks should be continuously or more accurately, periodically, handled by the application.
These tasks should be executed independently of the machine status and/or mode of operation.

Capable to always be ready to receive incoming communication (typically, from the Host) with

reasonable response time and more important, with pre-defined limited response time.
The application program should not be too busy (in terms of time) with any given task, and
should always be able to obtain and properly respond to incoming communication.

e Determinism.
The application program should execute the same sequences, respond to incoming messages,
and create communications to the device network, in a determined way, with little delays or
jitters and within a predefined limit.

e Maintainability.

Finally, but not less important is the requirement for easy development and maintenance of the

program. The program must be organized in a way that complex sequences can be easily written,

controlled, and maintained.

There are numerous methods to write a program that will answer the above requirements. For
example: multi-tasking and interrupts.

Elmo has an extensive experience in the development of user applications. We have acquired this
experience during many years of customers support and during in-house development of user
applications.

Based on this experience, we have concluded that the optimal method to write programs for
machine sequences is a structure that is based on States Machines. This programming structure
optimally answers the above requirements.

With a States Machine structure, a program does not need Multi-Tasking (a complex structure for

most programmers, and obviously most Motion Control engineers) and in most cases even interrupts

are not required. All that is needed is an understanding of the basics of States Machine
programming. The code then becomes very simple to develop and to maintain.

All programs examples provided by EImo are implemented using States Machine structure. It is
strongly recommended to use this programming structure. It will enable easier use of EImo’s

examples, allow EImo’s support team to provide better and faster support. In addition, it will shorten

your time-to-market and reduce your development risks significantly.

This is a good point to start explaining the details of States Machine programming structure. The
explanation is not simple, and is presented in a systematic procedure.

G-MAS — Gold Maestro Software User’s Manual

Software User Manual

XXXXXXXXXXXX(0.01)

3.5.1. The main() program structure

Elmo’s recommended structure for the main() function of a G-MAS User Application program is

presented in Figure 1:

o

Y

Mainlnit()

Y

L MachineS

equences()

Y

{ MainClose() 1

h 4

e

Figure 1: Main() program structure

The main() starts with a call to Mainlnit(), a function that performs all program and system

initializations (more on this later within the manual’s examples). After all initializations are
completed, the MachineSequences() function is called. This function intentionally starts the
execution of the machine sequences and motions. During the machine operation, the
MachineSequences() function does not return to the main(), until the program requests to terminate
(due to, e.g. errors, user request to close, etc.). When the machine operation is complete, the

Machine Sequences() function returns to the main(), which calls the MainClose() function to close
everything that requires closing, before the program terminates.

This is the main() function of the program. Simple and clean as possible. Now we progress into the

MachineSequences() function to find the implementation of the machine sequences, using the States

Machine structure.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-18

XXXXXXXXXXXX(0.01)

3.5.2. The MachineSequences() Function

Figure 2 presents EImo’s recommended structure for the MachineSequences() function.

Please note that a block colored red, is a segment of code that requires to execute as fast as possible
and should not include any process with a relatively long execution time or delay. This will become
especially relevant as we investigate deeper within the program structure. Obviously, it should not
include any endless loop or any waiting for a system process to end. A red colored block should
include a segment of code that unconditionally executes a limited size code, with no delays or waits.

MachineSequences() starts with a call to MachineSequenceslinit(). This function initializes all variables
as may be required to activate the MachineSequencesTimer() and to manage the States Machine
(refer to Figure 2).

Immediately after, MachineSequences() calls the EnableMainTimer(TIMER_CYCLE (Remember, the
format (CAPITAL_LETTERS) refers to a constant defined by the programmer in the header file)) to
start the execution of the MachineSequencesTimer() function and to define that it will be
automatically executed by the Operating System (OS) each TIMER_CYCLE ms. As a typical value for
these descriptions, let’s assume a TIMER_CYCLE = 20m:s.

From this point on, the OS activates the MachineSequencesTimer() every 20ms. This timer function
actually handles and manages the States Machine, as explained below.

The MachineSequences() function now enters an endless while loop, waiting for a global variable
(giTerminate) to indicate that the MachineSequencesTimer() is asking to terminate the program. The
giTerminate variable will initialize to FALSE when the MachineSequencesinit() function starts, and will
optionally be set to TRUE, when and if needed (possible for a program to never terminate) by the
MachineSequencesTimer() function.

Generally speaking, this endless while loop needs to do nothing except wait for a termination
request. In order not to load the CPU just for running-in-loops-doing-nothing, a Sleep(SLEEP_TIME) is
inserted in the loop. A typical value for the SLEEP_TIME is 100ms, meaning (in our example) that this
background loop is activated approximately each 5 cycles of the timer function (which is activated
every 20ms).

Note that the timer method is an accurate method to create calls to the timer function each given
period. The Sleep() method is not accurate but timing accuracy is not an issue for this idle loop.

Finally, since we have here a background loop code that is activated periodically in a relatively low
rate, we can use it to perform some less time-critical processes as may be required by the
application. Processes, that you may not want to include in the main States Machine which is

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-19

XXXXXXXXXXXX(0.01)

deterministically executed by the timer function. This is why we have the optional
BackgroundProcess() function within this while loop.

“Immediately” after termination is requested, the while loop ends, and MachineSequences() calls to
MachineSequencesClose() to close everything that needs to be closed, before returning to the main()
function to terminate the program. Why “immediately” in quotation marks? Because the response
time may be as long as the SLEEP_TIME of this loop. Nevertheless, response time should not be an
issue when processing a termination request.

MachineSequencesTimer()
starts from this point every
TIMER_CYCLE ms

=

giTerminate = TRUE

giTerminate = FALSE

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-20

XXXXXXXXXXXX(0.01)

Figure 2: MachineSequences() function

Now we have a program that is “slowly” looping in a background —an almost idle loop, while a timer
function, MachineSequencesTimer() is triggered and executed each TIMER_CYCLE ms (20ms in our
example), to execute the States Machine.

Let’s investigate the MachineSequencesTimer() function in-depth.

3.5.3. The MachineSequencesTimer() function

Figure 3 presents the general structure of a typical MachineSequencesTimer() function.

Why "general"? Because it does not present the details of the States Machines. This will be
presented only later. First, understand the general structure of the MachineSequencesTimer()
function.

Initially, upon a Timer event (each TIMER_CYCLE ms, as initialized above), the
MachineSequencesTimer() function is triggered. Its first action is to call the ReadAllinputData()
function.

The ReadAllinputData() function is an application dependent function. Its task is to read all inputs
that may be necessary for the States Machines and to copy them into variables that are not
accessible by the "external world".

This will ensure that all the States Machines code, as executed during this timer event, will use the
same values of input variables.

Why this is needed?

As the timer event is not necessarily synchronized with "external world" operations, a host, for
example, can access the MODBUS memory and modify one of the registers that are used by the
States Machines code. Similarly, the G-MAS core can obtain a new reading of e.g. drive's speed over
the device network. As such "input data" can be changed by the external world during the
MachineSequencesTimer() execution, creating inconsistent operation of the code's flow. It is
necessary first to copy all necessary values into "mirror variables" and only then start to use these
mirror variables, which will remain unchanged until the next timer event.

This is exactly the task of the ReadAlllnputData() function. Depending on the application, it should
access all necessary variables (of the MODBUS memory, from the G-MAS firmware core, etc.) and
copy them into "mirror variables".

It is extremely important to read and create a copy of all necessary "external world" variables at the
beginning of MachineSequencesTimer() — using the ReadAllinputData() function — and to use only
these copies, or mirrors, during the States Machines code. This will avoid difficulties in
synchronization and inconsistent code behavior.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
321

XXXXXXXXXXXX(0.01)

Similarly, the State machine should not directly write to the "external world". The States Machines
code should set internal variables (variables of the States Machines, not used outside of it) to reflect
the "code decisions" or requirements to write to the "external world".

Only when a pass through all the States Machines (explained in detail later) is completed, the
MachineSequencesTimer() calls (Figure 3) the WriteAllOutputData() that uses these internal variables
to write what should be written into the external world variables (MODBUS, G-MAS firmware core,
etc.).

The programmer should take care to properly update the "external world" variables (inside the
WriteAllOutputData() function), as in some cases, the order of writing may be important. For
example, (the programmer should) carefully define the Host handshaking over the MODBUS, to
ensure synchronized and fully consistent communication.

Writing to "external world" variables should not be performed from within the Machines States code
but only at the WriteAllOutputData() function, to ensure proper synchronized and consistent
operation.

Now let's look at the States Machines themselves. Within Figure 3 below, you can see that in the
general case, the MachineSequencesTimer() function can handle multiple independent States
Machines. For example, for different sub-systems of the machine that require managing
independently. Each State Machine has its own set of state variables and each state machine is
independently managed (although a specific implementation can condition the behavior of a given
States Machine with the status of another States machine and this is specific for the application).

For example, Each axis can have its own States Machine.

Another example of an implementation can be to have a State Machine for XYZ and a second Sate
Machine for the Machine's Loader mechanism. Both are independent, although one can wait for the
completion of a process at the second States Machine to start its own process, such as:

Status XYZ State Machine Loader/Unloader States Machine
States Machine 1 States Machine 2

Loading an object Waiting for States Machine 2 Loading the object

Processing the object Processing the object Waiting for States Machine 1

Unloading the object Waiting for States Machine 2 Unloading the object

Loading next object Waiting for States Machine 2 Loading next object

Etc...

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-22

XXXXXXXXXXXX(0.01)

Of course, this is just a simplified processing, but it explains why it will be easier to handle two
independent States Machines, as shown in Figure 3(showing the general case of up to N States
Machines). The example above also shows why a given implementation may need to condition the
behavior of a given States Machine with another States Machine (they are managed independently,
buy may behave conditionally).

Figure 3 shows that each States Machine uses the following variables (where "N" starts at 1 for the
first States Machine ...).

giStateN

Defines the current state of the States Machine. It is normally initialized by the
MachineSequenceslnit() function (see above) and then it can be modified over the MODBUS (Host
requests to execute a task) or by the States Machine itself, while it steps from state to state
(execution of a process).

giPrevStateN

Hold the state value as it was in the previous execution of the MachineSequencesTimer() function.
Using this variable, the States Machine code (will be shown in later figures) can detect if the giStateN
value is a "new" state and act accordingly (see later for details).

It is generally initialized together with the giStateN variable.

giSubStateN

In case a Sub State Machine (see later for details) is necessary, this variable defines the current state
of the Sub State Machine. It is generally initialized by the MachineSequenceslnit(0 function — just as
the above to variables.

However, it is also reset to zero (or better to say: the value of the first Sub State), by the
MachineSequencesTimer() every time a new state is requested (more on this later).

These variables are used to manage the States Machine and also a Sub State Machine, as we will see
in later figures.

Why is there a need for Sub State Machine?

Assume a States Machines of XY axes. Also, assume that it needs to manage the following tasks:
HomeXY, ScanObject and GoToldle. The States Machine will have basically three states: HOME_XY,
SCAN_OBJECT and GO_TO_IDLE.

But, executing HomeXY is by itself a process that consists of a sequence of motions and conditions,
so it must be also implemented as a States Machine. This will be implemented as a Sub States
Machine.

During Homing of XY, the Main States Machine (the one that appears in the next figure, in the
MachineSequencesTimer() function) will be in the HOME_XY state, while the Sub States Machines
(we will see figure later) will step inside the various steps of the homing process.

Theoretically speaking (and actually, even practically), this structure of multiple independent States
machines running in parallel (as shown in the next figure) and also of nesting of States Machines one

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-23

XXXXXXXXXXXX(0.01)

inside the other (as explained above and as we will see in later figures) can be extended as much as
required and suitable for the application.

In the figures presented below, we show 1...N parallel States Machines and a depth of only two
States Machine (the main States Machine and one Sub States Machine). This is just for the simplicity
of the figures. However, the depth can be increased and the required changes of the variables names
and handling are minor and should be easily handled by experienced programmers.

Note that while theoretically unlimited parallelism and depth can be implemented, the programmer
is responsible to make sure that the worst case execution time of the overall
MachineSequencesTimer() function will be shorter than the TIMER_CYCLE time, in order not to
saturate the G-MAS CPU processing load (this is OK, if the code is written using our guidelines as
described within these chapters, as the G-MAS processor can handle more States Machines than any
practical application will need).

Remembering the giTerminate variable that we have described earlier in this chapter, it should be
clear that any States Machine, required by any given application, can set this global variable in order
to request (from the MachineSequences() function) to terminate the application program back to the
operating system.

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

Executed each
TIMER_CYCLE ms by the 05

The desired state of each State
Machine (the values of giStates,
giStatey, ..., giStaieN) can be set by
the Host over the communication —
will be read by ReadAllinputData(}— or
by the code of the States Machine
itself, with each finished state setting
the value of the next state toc execute

The concept of multiple States
tachine executed in parallel {as
shawn in this figure} and the
concept of nesting of a Sub States
Machine inside a given States
Machine, can be both expanded
with theoretically unlimited depth
of nesting and unlimited number of
States Machines handled in
parallel, in each level of the
nesting.

Of course, the worst case execution
of the MachineSequencesTimer()
function must be shorter {enough

shorter) comparing to the
TIMER_CYCLE te avoid too high
CPU load

MNote: Any States Machine can set the
giTerminate variable to ask for
pragram termination (back to the OS)

Figure 3: Typical MachineSequencesTimer() function

The next figure shows the details of the code within one of the States Machines:

3-24

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-25

XXXXXXXXXXXX(0.01)

Executed each
TIMER_CYCLE ms by the 05

! Yes

States ¥
Machine on

giStatea i
variable, with
support for
optional sub

States.
Machines on
each case,

using
giSubStatea
variable

StateaAFunction{) and all
ather StateXXFunction{)’s
aptionally include sub States

Machines, see next figure

)
[
»

Using giStatez2,
giPrevStatez
and giSubState2
variables

Using giStateN,
giPrevStateN
and
giSubStateN
variables

‘
‘

Figure 4: Code details within one of the States Machines

Please note that handling reentrancy and the termination request has been omitted from this
drawing (compared to the previous example), in order to maintain simplicity. Of course, these two
administrative processes, as explained above, are still handled as the first two tasks within the
MachineSequencesTimer() function.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-26

XXXXXXXXXXXX(0.01)

You can still see the ReadAlllInputData() and WriteAllOutputData() functions, and you can still see the
blocks of the optional 2" to N™ States Machines, but now the process of the 1* States Machine is
presented with details.

It starts with handling the resetting of the giSubStatel (if necessary, which is the case when a new
giStatel starts) and handling giPrevStatel.

Why is this required?

New values for giStatel can be defined externally by the Host (over the MODBUS) or by the States
Machine itself. Generally speaking (a given application can modify this behavior if needed), when a
new main State starts, you would like the related Sub State to "start-from-zero". This is why
giSubStatel is cleared if giStatel gets new value.

Following this handling, there is a simple switch case over the values of giStatel. Each case calls for
the proper function.

The default case, although should not happen, should be handled as well (probably with some error
message and do nothing).

Please note that the specific function that is called for each case is colored red. This
means, as explained above, that it should not include any "waits" or "delays". It should
execute what is requested and return.

If a wait is necessary (e.g. wait end of motion), it should be implemented as a State. Each time the
States Machine is executed, it will reach the code relevant for this state and will check for end of
motion.

If the axis is still moving, the code will return without changing the State value, so that the States
Machine will return to the same code on the next timer event. If the motion ended, the code should
properly change the State value, so that the next State (the next step in the overall sequence) will be
automatically executed upon the next execution of the timer event.

It is important to note and to understand that this means that the minimal resolution of time in this
method (States Machine) is the TIMER_CYCLE. If it is, for example, 20ms, it means that the sequence
can be managed in steps that cannot be shorter than 20ms. Similarly, the response time — or the time
to detect an event and respond to it — may be, in the worst case, up to 20ms. Or even sometimes
twice of the TIMER_CYCLE time (one cycle to detect, one cycle to respond).

It is the only single disadvantage of the States Machine code structure method, which has many
advantages. For very simple application, with very simple process or sequence to handle, and if
ultimate fast response time is needed, one may consider not to use the States Machine structure.

As explained below, nesting of States Machines is supported and is even a practical need (at least of
depth of two States Machines). As a result, each of the cases functions that appears in Figure 4 (like
the StatelAFunction() function, which is executed when giStatel = STATE1_A) can manage a Sub
States Machine by itself. This is shown in Figure 5:

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

StateaAFunction() as an example. Can

{ be any StateXXFunction() that needs to
manage Sub States Machine

Switch (giSubStatea)

Case SUB_STATE1_A_A

No

Case SUB_STATEa1_A_B

Case SUB_STATE1_A_N

A

A simple structure is presented in this level (Sub States Machine;}. Theoretically, more Sub
States Machines can be handled here in parallel (as presented in the upperlevel in
previous figures). Theoretically, additional nesting can be also implemented (Sub-Sub
States Machine), with unlimited nesting levels.

Figure 5: Nested States Machines example
Note that in this level there is no handling of any PrevState variable, as we have defined (in our
example only) that the depth is only two nested States Machines. So there is no Sub-Sub States
Machine of the Sub States Machine ...

3-27

Actually, this ends the explanation of the States Machines programming structure. Shortly within this

chapter (after the next section about handling errors), you will find a section presenting a Sample

Code. It is based on a simple States Machine structure that will help, we hope, understand and
implement this approach.

Within this Sample Code, you will find actual processes and more "application related" names for the

various states (instead of SUB_STATE1_A_N for example) that will make it easier to understand.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-28

XXXXXXXXXXXX(0.01)

Try to read the Sample Code and try relating it to the more "theoretical" explanation of this chapter.
You will surely find that the suggested and recommended concept of States Machines is easy to
understand and even more easy to adapt for the needs of your application.

3.6. Handling errors

This chapter focuses on errors during calls to Function Blocks (the functions supplied by EImo within
the G-MAS FB Library). Of course, many other machine-specific errors can be defined but those
errors should be handled as specifically suitable for each machine and are typically handled as part of
the States Machine that manages the machine sequences (see above).

Starting with the bottom line, handling errors (during calls to Function Blocks) is part of the
responsibility of the User Application program’s developer (the user), as each machine calls for
different response to different types of errors.

How are these errors detected? Where does a user place his functions to handle these errors? What
is ElImo’s recommended good programming practices for handling these errors?

To clarify, it is impossible for us to provide a generic function to handle the errors, as each machine
requires different error handling process. However, there is still a need to define where, when, and
how such an error handling function is called. This chapter answers this requirement.

Each Function Block function returns a Return Code. Its value is O (zero) in case the Function Block
call was executed without any error. If there is an error, the Return Code will get a value that is
related to the type of the error.

As a result, a general segment of code that calls a Function Block function should look like (in this
example, it is a call to Move Absolute function):

// Inserting the structure parameters:

sMove Abs in.fAcceleration = 100000.0; // Value of the acceleration
sMove Abs in.fDeceleration = 100000.0; // Value of the deceleration
sMove Abs_in.fJerk = 2000.0; // Value of the Jerk
sMove Abs in.eDirection = MC POSITIVE DIRECTION; // MC Direction Enumerator type
sMove Abs in.eBufferMode = MC BUFFERED MODE; // MC BufferMode Defines the behavior of
the a;is B - - -
sMove Abs in.dbPosition = 100000.0; // Target position for the motion
sMove Abs_in.fVelocity = 5000.0; // Velocity in
sMove Abs in.ucExecute = 1g
//
rc = MMC MoveAbsoluteCmd (hConn, iAxisRef, &sMove Abs in, &sMove Abs out);
if (rc != 0)
{

HandleError () ;

Or, similarly:

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

3-29

// Inserting the structure parameters:

sMove Abs in.fAcceleration = 100000.0; // Value of the acceleration
sMove Abs in.fDeceleration 100000.0; // Value of the deceleration
sMove Abs in.fJerk = 2000.0; // Value of the Jerk

sMove Abs in.eDirection MC POSITIVE DIRECTION; // MC Direction Enumerator type
sMove Abs in.eBufferMode = MC BUFFERED MODE; // MC BufferMode Defines the behavior of
the axis

sMove Abs in.dbPosition = 100000.0; // Target position for the motion
sMove Abs in.fVelocity = 5000.0; // Velocity in

sMove Abs in.ucExecute 1;

//

if (MMC MoveAbsoluteCmd (hConn, iAxisRef, &sMove Abs in, &sMove Abs out) ! 0)

{

HandleError () ;

The user is responsible to create the HandleError() function. This function can optionally get
arguments, and, of-course, different functions can be used at different locations of the program.

Nevertheless, the code that should perform a sequence of calls, becomes a list of if-call (or call-if).
This is a disadvantage of the C programming that Elmo is working to improve (see below).

Some programmers tend to bypass this difficulty using one of the following methods. We strongly
recommend not using these bypasses.

e (Call the library functions without checking the Return Code. Just ignoring it.
This will surely create a nicer and simpler code.
The assumption behind using this bypass is that the code is debugged and that there should be
no errors in the calls to the library functions. Although this is correct, there is no way to ensure
that errors will not happen in some given sequence which was not fully debugged by the user.
In the case of an error, ignoring it and continuing the program as if there was no error (the
program assumes that the function was executed properly and completely), will lead to
unexpected machine’s behavior, which can be in some cases dangerous and critical.
As stated above, EImo strongly recommends not to use this method. Errors should be checked
and responded to, according to the suitability for the machine.

e Asecond bypass is to hide the library function within a user developed wrapper function (see
above).
In this case, the wrapper function will have no return value, such as:
MyWrapperMoveAbs(..);
MyWrapperMoveAbs(..);
MyWrapperMoveAbs(..);
And the main code will indeed become simpler.
However, it is important to note that the wrapper function itself, which calls the library function,
should handle the Return Code as specified above. Handling the error within the wrapper

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-30

XXXXXXXXXXXX(0.01)

function will be nice (it is hidden from the point of view of the main code), but it creates another
difficulty; Can an error be properly handled within a deeper layer of the code? Don’t we want the
main code (the main States Machine, see later in this chapter) to handle the errors, or at least be
aware of them?

From EImo’s experience, trying to use this method (hiding the Return Code within the Wrapper
Function) always ends with the need to return a value from the wrapper function, and again, this
value needs to be checked —if (...) — in the code with each call to a function.

So, is this structure of if-call (or call-if) a must?

For now, yes it is. However, EImo is working to develop a new C++ based interface to all of the
functions included within its G-MAS FB Library. With this C++ based interface (using unique features
of the C++), the user will not need to check the return code of each function, but instead will be able
to just call the function. The above lines of code will change into:

// Inserting the structure parameters:

sMove Abs in.fAcceleration = 100000.0; // Value of the acceleration
sMove Abs in.fDeceleration = 100000.0; // Value of the deceleration
sMove Abs in.fJerk = 2000.0; // Value of the Jerk

I
N

sMove Abs in.eDirection C _POSITIVE DIRECTION; // MC Direction Enumerator type

sMove Abs in.eBufferMode = MC BUFFERED MODE; // MC BufferMode Defines the behavior of the
axis - B - - -

sMove Abs in.dbPosition = 100000.0; // Target position for the motion

sMove Abs in.fVelocity = 5000.0; // Velocity in

sMove Abs in.ucExecute = 1g

//

MMC MoveAbsoluteCmd (hConn, iAxisRef, &sMove Abs in, &sMove Abs out);

sMove Abs in.dbPosition = 200000.0; // Next target

MMC MoveAbsoluteCmd (hConn, iAxisRef, &sMove Abs in, &sMove Abs out);

This new interface will be available within few months and will enable the G-MAS C programmers to
enjoy from even a simpler code development.

3.7. Sample code

The Sample project shown below is a project only created to demonstrate the implementation of the
above programming guidelines. It is quite an empty code that does nothing specific besides being
ready for the implementation of an application program based on states machine. We have included
some basic states in the Sample application, to demonstrate how variables/states should be named,
initialized and managed. Since it is a “clean” project, it is easier to show how all the guidelines
described in previous sections, are implemented.

You can call EImo office to receive a Sample project code (it may also be included as part of the EImo
PC Suite environment installation, in which case you should be able to find it on your computer, at
the same location as appears in the next figure.

G-MAS — Gold Maestro Software User’s Manual

Software User Manual

XXXXXXXXXXXX(0.01)

Below is a snapshot of the Sample project directory. You can see the location and the name of the

3-31

folder, the names of the C and header files (including the wrapper functions), that are always in pairs.

Share with + Burn

Organize » Include in library +

| Debug

|| «cproject
" |] .project
| Sample.c
|| Sample.h

|_| Sample_Debug.launch
|| SampleWrapper.c
|| SampleWrapper.h

l 8 items

New folder =~ [@

Exploring (using the Eclipse) the Sample.c, the main source file of the project, we can see the file's

header, describing the project, the file, version, date and a short description of the application. This
is followed by the include files (system files, ElImo MMC library file and project's specific include files).

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

15 C/Ce+ - Sample/samg

Fiie Edit iouce Refactor Navigate Search Project GMAS Run Logger Window Heip
5~ & & & & - : 3+ @D v | savetofile B EB Remote Syst... %% Debug
&c - BeE@m: G-Flroera-

(e © sompien | —E
&

n 1/* -
L] o ======= T

3 Project: Sample B

4 File: Sample.c

5 Author: Sapir Eyal

6 Date: 06 December 2010

7 Version: 1.00

8

95 Description:

1 This file is a sample code, showing the implemntation of the GMAS C

2 programming guidelines.

3____

)

S

6/

8 Includes

o~/

1#include <stdio.h> // C header files

2 #include <sys/time.h> // For time structure

#include <signal.h> // Needed for using the system timer

2
2
2

5#include "MMC definitions.h"™ // Header file for all Elmo's GMAS Functions Blocks
6

7 #include "Sample.h" // Application header file

8 #include "SampleWrapper.h" // Header file for the application wrapper function
9/*

Application global wvariables

WWWwHooWNWNKNN K B R e e e
S A

giTerminate; Flag to reguest program termination

25int giStatel; // Holds the current state of the 1lst main state machine
2E6int giPrevStatel; // Holds the wvalue of giStatel at previous cycle

27 int giSubStatel; // Holds teh current state of the sub-state machine of 1lst
38int giReentrance; // Used to detect reentrancy to the main timer function

39

40 int giXReverseLimit; // Examples for data read from the GMAS core about the X, Y
4lint giYReverseLimit;

42int giXIndexActivated;

43int giYIndexActivated;

44imt giXInMotion;

45int giY¥InMotion; J

-

m L

| Writable | Smart Insert | 10t

After the include files; the global variables are defined, using the naming convention we defined
above. Variables are defined clearly, with a short explanation and, preferably, one per line.
Initialization of variables can occur at this phase (as part of the definition), but we prefer to perform
all initialization within the suitable initialization functions, as described in the n ext section.

Immediately after the Application global variables, we define the structure variables required for the
interfaces with the MMC function blocks. In the Sample example, these structures are initialized as
part of their definition. We do recommend performing it as part of the initialization functions, as
suggested in earlier sections.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-33

XXXXXXXXXXXX(0.01)

T N
file Edit Source Refactor pNavigate Search FProject GiMAS FRun Logger Window Heip
g - @ & @ &/~ F~0~ swetofile & T Remote Syst.. %5 Debug
oS- PeEED H-F-wero-
- | ==
— il
31 Application global wariables —
3 = T T EETEEsm==T====== ‘g
33 %/
34int giTerminate; // Flag to request program termination
25int giStatel; // Holds the current state of the lst main state machine
3eint giPrevStatel; // Holde the value of giStatel at previous cycle
327 int gisSubStatel; // Holds teh current state of the sub-state machine of 1lst
38int giReentrance; // Used to detect reentrancy to the main timer function
35
40 int gixkeverseluimit; // Examples for data read from the GMAS core about the X, ¥ i
41 int gi¥YReverselimit; ':
42int giXIndexActivated;
43 int giYIndexActivated; I
44 int giXInMotion;
45int gi¥InMotion;
46/
47
48 Global structures for Elmo's Function Blocks
e e e sSS n
50 */
51 MMC_AXIS REF_HNDL gioRef = {0}; // indexes of IO
52 MMC_AXIS_REF_HNDL ghxisRef([3] = {0,0,0}; // indexes of axes
S3MMC_AXIS_REF_HNDL gGroupRef = {0};
54 MMC_AXIS_REF_HNDL gGroupRef2D = {0};
55/
56 e L == == ==
57 Function: main()
58 Input arguments: None.
59 Output arguments: None.
60 Returned value: A dummy value of 1 to avoid compilation error.
61 version: version 1.00 I
62 Updated: 06/12/2010

Modifications: N/B

Description:

The main function of this sample project.

69 */
70 int main()
71 {
727/

73// 1Initialize system, axe= and all needed initializations il

4 m »

| Writable Smart Insert ‘ 1:1

We recommend using global variables, although it should be done with care, as it enables access to
these variables anywhere within the application code, avoiding the need for multiple arguments for
each function.

After all the global variables are defined, the main() function appears. Please note the comments
header above the main() function, as well as above any other function in the code. It provides details
about the function, such as version, inputs/outputs, description, etc.

The main() function is of type "int" (although in this example, has no value to return) as the Eclipse
compiler asks for this function type.

The main() function is as simple as it appears in the flow charts above: Initialization, Execution of
machine sequences and Closing. Note the format of the comments, as the same format is used
throughout the Sample project code.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-34

XXXXXXXXXXXX(0.01)

C/Cx+ - Sample/sa - TR —— — =[O
File Edit Source Refactor Mavigate Search Project GMAS Run Logger Window Help
v g & 2 &~ B0~ saetofile [[Remote Syst.. %5 Debug
®c sy BeEN $H-FH-oera-
lc| Sample.c &2 [£] sample.h 1 =0
N 55 /%]
b 56 ———=
57 main()
58 None. |
59 None. L
&0 irned value: 2 dummy value of 1 to avoid compilation error. ‘=
6l Version: Version 1.00
€2 Updated: 0e/12/2010
63 Modifications: N/R
64
&5 Description:
66
&7 The main function of this sample project.
68 ====
659>/
T70int main ()
711
72/
73// Initialize system, axes and all needed initializations
T4 /S
75 MainInit(); |
the state machine to handle the system sequences and control I
7 MachineSequences(); L
8 |
81/, Close what needs to be closed before program termination
gz //
a3 MainClose () ; |
ga// |
85 return 1; // Terminate the application program back to the Operating System |
861
BT /*
89 MainInit()
S0 1t arguments: None.
91 put arguments: None.
52 Returned value: None. I
33 Version: Version 1.00
94 Updated: 0e/12/2010
95 Modifications: N/R
S6 . . I
57 Description:
58
99 Initilaize the system, including axes, communication, etc. |3
a n b
| Writable | Smart Insert | 36:15

The empty main initialization and closing functions appear just after the main. They are to be filled
with application related code. The initialization function can be used to initialize communication and
axes, while Closing can be used to close them, closing log files, printing some message to the
standard output, etc.

Following these functions, we see the MachineSequences(). It is documented and commented in a
similar way. Actually, it is a very simple function built just as described in the flow charts in this
chapter. The details are "hidden" within specific functions, like MachineSequenceslnit() and
EnableMachineSequencesTimer() shown in the next diagram.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-35

XXXXXXXXXXXX(0.01)

Ele Edit Source Refactor MNavigate Search Project GMAS Run Logger Window Help |

N-ERe B ® &K+ FvO swvetofie 5 T8 Remote Syst.. %5 Debug [C/Crv |
e s B EE e

aniin, © reer | =]
M 1s3 === [=]
% 134 Function: MachineSequEnces()
135 Input arguments: None . B
136 Output arguments: None .
137 Returned value: None.
138 Vezrsion: Version 1.00
135 Updated: 06/12/2010
140 Modifications: N/A
141
142 Description: £
143
144 Starte the Main Timer function that will execute the states machines
145 to control the system. Also performs a slow background loop for
146 less time-critical background processes and monitoring of requests
147 to terminate the applicatiom.
148 —_—
149 %/ il
150 void MachineSequences ()
151 {
152 // |
153// 1Init all variables of the states machines
154 //
155 MachineSequencesInit();
156 //
157 // Enable MachineSequencesTimer() every TIMER_CYCLE ms
| 158 //
155 EnableMachineSequencesTimer (TIMER CYCLE) ;
160 //
161 // Background lcop. Handles termination regquest and other less time-critical backgroun
162 //
163 while (!giTerminate)
164 {
165 //
166 // Execute background process if required
| 167 //
168 Background?rocesses ();
169 //
170// Sleep for ~SLEEP TIME micro-seconds to reduce CPU load
171 //
172 usleep (SLEEP_TIME) ;
173 }
174 //
175// Termination requested. Close what needs to be cloased at the states machines
176 //
177 MachineSequencesClose () ;
178
179 | return; // Back to the main() for program termination : (=
« [3
o° | Writable |Smad[nseﬂ 124:3 I = =

This function is followed by the functions that it calls (the order of the various functions appearing in
the file is the order they will be called/used), starting from main() to the other functions it calls, and
so forth.

The MachineSequenceslinit() initializes all variables required to manage the states machines. Note
that constants are used and not numbers (e.g. IDLE and not 0), as defined in the programming
guidelines above.

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

[= C/C+ - Sample/Samplec - GMA pE]

File Edit Source Refactor Mavigate Search Project GMAS Run Logger Window Help

Nr-HE e & @ KR~ -0~ saetofie I T8 Remote Syst.. %5 Debug (B C/C+- |
S /- BeBO H~Froecra-

181/ - B
I'—r\:‘ 182 B
183 Function: MachineSequencesInit ()
184 Input arguments: None.
185 OCutput arguments: None.
186 Returned wvalue: None.
187 Version: Version 1.00
188 Updated: 0e/12/2010
185 Modifications: N/R
150
1591 Description:
152
1%3 Initilaize the states machines variables
154
195 %/
56 void MachineSequencesInit ()
27
S8 //
99 // Initializing all variables for the states machines
oss
01 giTerminate = FALSE;
o2
03 giStatel = IDLE;
04 giPrevStatel = IDLE;
05 giSubStatel = IDLE;
06 I
7 giReentrance = FALSE; I
o8
05 return;
101
11/
21z
213 Function: MachineSequencesClose () i
214 Input arguments: None.
215 Cutput arguments: None.
216 Returned wvalue: None.
217 Version: Version 1.00
218 Updated: 06/12/2010 I
219 Modifications: N/&
220
221 Description:
222

223 Cloze all that needs to be closzed at the states machines before the
224 application program is terminated.

225
226 %/
227 void MachineSequencesClose () i
4| m v
o* | Writable | Smart Insert | 196:8 I Fl= i = =

Omitting some empty functions (whose tasks are described in earlier chapters), the next interesting
function is EnableMachineSequencesTimer(). This uses system functions to enable the timer, and to
define the function triggered periodically by the timer. The user should not change this function
unless non-standard behavior is required.

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

S C/C++ - Sample/Sample.c - G 1AS Developer Studio
File Edit Source Refactor Navigate Search Project GMAS Run Logger Window Help (|
n-Eeald @ R %0 sewoe @ WRemetesp % oehug (BITET)
Y-V AN e FY IR R R R R
[¢) Sampleh | =0
N 259 /* D
Ib 2 60 ====================== ===
261 Function: EnableMa chineSEquenceinmez () =
262 Input arguments: None.
263 Output arguments: None .
264 Returned value: None.
265 Version: Version 1.00
266 Updated: 0e/12/2010
267 Modifications: N/A
268
269 Description:
275 l
271 Enabkles the main machine sequences timer function, to be executed each
272 TIMER CYCLE ms.
273
274 %/
275 woid EnableMachineSequencesTimer (int TimerCycle) E
276 {
277 struct itimerval timer;
278 //
275// Enable the main machine sequences timer function
280//
281 timer.it_interval.tv_sec = 0;
282 timer.it_ interval.tv_usec = TimerCycle * 1000; // From ms to micro sec
283 timer.it_value.tv_sec = 0;
284 timer.it_value.tv_usec = TimerCycle * 1000; //{ From ms to micro sec
285
286 setitimer(ITIﬂER_R_EAL, &timer, NULL);
287
288 signal (SIGALRM, MachineSequencesTimer); // every TIMER CYCLE ms SIGALRM is received
285
230 return;
| 251}
292 /*
293 semmmsmmmms s s s e m e ===
294 Function: MachineSequencesTimer ()
‘ 295 Input arguments: None.
296 Output arguments: None.
297 Returned value: None.
298 Version: Version 1.00
299 Updated: 06/12/2010
300 Modifications: N/A
301
| 302 Description:
303
304 A timer function that is called by the O3 every TIMER CYCLE ms.
305 I[t executes the machine sequences states machines and a‘Lc:ullv controls ~
4 LLiJ 2
P

|Writﬂb|z ‘Smarﬂnscrt |195=s : - = =

The next function is the MachineSequencesTimer(). It is the function triggered periodically by the
timer that actually executes the machine sequences (the states machines). It initially checks if

Termination was requested and if reentrance incorrectly occurred. If all OK, input data is collected
(all "external" data required for the states machines) and the main states machine is executed.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-38

XXXXXXXXXXXX(0.01)

File Edit Source Refactor Navigate Surch Eroject GMAS Run Logger Window Help
‘rMivEEal @ ‘@ KR+ H O saetofie 55 £ Remotesyst...
@O 4 @6,[_]@ g~ S R

MachineSequencesTimer ()
Input arguments: None.
Qutput arguments: None.
Returned value: None.
Version: Version 1.00
Updated: 06/12/2010
Modifications: N/A

Description:

A timer function that is called by the 03 every TIMER CYCLE ms.
It executes the machine sequences states machines and actully controls
the sequences and behavior of the machine.

In case the application is waiting for termination, do nothing.

This can happen if giTerminate has been set, but the background loop

didn't handle it yet (it has a long sleep every loop)

if (giTerminate == TRUE) return;

Avoid reentrance of this time funetion

Reentrance can theoretically happen if the sxecution of this timer function
wrongly longer than TIMER CYCLE. In such case, reentrance should ke avoided
prevent unexpected behavior (the code is not designed for reentrance).

addition, some error handling should be taken by the user.

(giReentrance)

Print an error message and return. Actual code should take application related
printf ("Reentrancy!\n");

return;

giReentranca = TRUE; // to ensble detection of reentrancy. The flag is clear

Read all input data.

4

‘Writable Tt 22 1 le@maga

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

i

Fiie [Edit Source Refactor Mavigaie Search Project GMAS Run Logger Window Heip

A

-
a

&
=

@PeE® Si-F~w v~

atb i'. : |~ ‘*# ~0Q- i&wewﬁh

~
Read all input data. "

Here, every TIMER CYCLE ms, the user should read all input data that may be
required for the states machine code and copy them into "mirror"™ wvariables.

The states machines code, below, should use only the mirror variables, to ensure
that all input data is synchronized to the timer event.

Input data can be from the Host (MODBUS) or from the drives or I/Os units
(readingfrom the GMAS core firmware using one of the Function Blocks library
functions) or from any other source.

ReadAllInputData();

|
States Machines code starts here! ‘

In case it is a new state walue, clear also the value of the sub-state
to ensure it will start from its beginning (from the first ssub-state)

if (gisStatel != giPrev3tatel)

{
giSubStatel = FIRST_ SUB_STATE;
giPrevStatel = giStatel;

}

Handle the main state machine.

The wvalue of the State variable is used to make decisions of the main states machin

as necessary, the relevant function that handles to process itslef in a sub-state m

switeh (gisStatel)

{

Do nothing, waitign for commands

aase IDLE:
{
break;
}
i " »

|Wtitable | Smartlnsert | 383:1 elaBpo

The main states machine is handled exactly as we described in the flow charts above. In the Sample

project you can see that the main states machine supports two states (two "tasks"): XY_HOME and

XY_MOVE. Each one of these states, in turn, handles a sub-states machine, that will execute the

action sequences required to perform the task.

G-MAS — Gold Maestro Software User’s Manual Software User Manual

3-40

XXXXXXXXXXXX(0.01)

r
- = i -E@g
® Ciis hmplﬁ-ﬂﬂe’c P k) !—

| File Edit Source

Y
/!
rr

Tk G G L G
W WWw W W W W o

&

o Wk

97

£
i3

3
£3
£3

Refactor MNavigste Search Project GMAS Run Logger Window Help

il & & ® K~ I~ 0~ Saetofile i &l RemoteSyst... %3 Debug [Fg) C/C++ |
®e F- BervET H-F-verD-
.LQSCmpbcié _ [} sample.h 1 = =)
o |- 22 >
-~ e . e
Ha Handle the main state machine.

The value of the State variable is used to make decisions of the main states machin

as necessary, the relevant function that handles to process itslef in a sub—-state m

switch (gistatel)

{
Do nothing, waiticn for commands

case IDLE:
i

break;

}
Do XY homing

case XY HOME:

{
StateXYHomingFunction() ; /f calls a sub—-state machine function to handle
break;

}

Do XY move

case XY _MOVE:

{
StateXYMoveFunction() ; f/f calls a sub—state machine function to handle
break;

The default case. Should not harpen, the user can implem=nt error handling.

defaulct:
{
break;

Write all output data

Here, every TIMER CYCLE ms, after the execution of all states machines
(based on all the Input Data as read from all sources at teh top of this function)

the user should write all data (written to mirror wariables within the

states nachine=s code) to the "external world™ (MODBUS, GMAS FW COXe, ...).

L L}

Smart Insert 383:1

Note the function ReadAllinputData() that must be modified by the user to actually access the
sources of all required input data, and create a copy (mirror) of their value. This is to be used within

the states machine code, ensuring that no variable changes while executing a given cycle of a states
machine code.

The StateXYHomingFunction() is a good example for a sub-states machine code. While the machine is
in XY_HOME state (the main states machine's value is XY_HOME), this function will be run each timer

event and will

handle its sub-states machine to manage the XY_HOME process.

Of course the example described in the Sample project is a very simplified homing process. It only
demonstrates the programming concept, and does not show how a complete homing process should
be written. However, this keeps the Sample application clean and simple as possible.

G-MAS — Gold Maestro Software User’s Manual

Software User Manual

XXXXXXXXXXXX(0.01)

Davigate Search Project GMAS ERun Logger ,'\'fm Heip

3-41

el B @ R IO savetofile £y 8 Remote Syst... 5 Debug
e Deo@l S5 e oD
& [Fas0/+]
B as1
492 PFunction: StateXYHomingFunction () =]
| 493 Input arguments: None.
494 Output arguments: None.
4395 Returmed value: None.
496 Version: Version 1.00
497 Updated: 06/12/2010
498 Modifications: N/A
499
500 Description:
S01
502 A sub-states machine function. This function executes the sub-states machine
503 of the XY homing process.
504
505 The homing precess, in this simplified example consists of the following steps:
506
I 507 Move to limit.
508 Wait for limit
509 Move to index
510 Wait for index
511
512 Each step is handled by a dedicated function. Howewver, calling a function
513 is not a must and the relevant code for each sub-state can be directly
514 written within the switch-case structure.
515==
516/
517 void StateXYHomingPunction ()
518 {
519 // H|
520// Handle the sub—state machine.
521 //
522// The value of the Sub-State variable is used to make decisions of the sub—states mac
523 // as necessary, the relevant function that handles to process itslef.
524 //
525 switch (giSubStatel)
526 {
527 //
528// Move to limit
529 //
530 case XY_HOME_MOVE_TO LIMIT:
531 {
532 SubStateXYHomingMoveToLimitFunction () ;
533 break;
534 }
535//
536// Wait for limit =
< it] 3
: o sRaB@o

| Writable SmartInset | 383:1

Then the next stage is.....

G-MAS — Gold Maestro Software User’s Manual Software User Manual

3-42
XXXXXXXXXXXX(0.01)
2 C/C++ - Sample/Samplecc - GMAS o] e 3
File Edit Source Refactor MNavigate Search Project GMAS Run Logger Window Help |
BrEEE & 2 K- H O~ saetofie [CB Remote Syst.. % Debug
R AN] LR R R
» |, 8 sroen | _
&/ 520 Handle the sub-state machine. |j |
|| s21// |I
522 // The value of the Sub-State wariable 1= used to make decisions of the sub-states mac =
S523// as necessary, the relevant function that handles to process itslef.
s524 //
525 switch (giSubStatel)
526 {
527//
s28// Move to limit
528//
| 530 case XY_HOME_MOVE_TO_LIMIT:
531 {
532 SubStateXYHomingMoveToLimitFunction() ; :
533 break;
534 }
535//
536// Wait for limit
537 /7
538 case XY_HOME_WAIT_TO_LIMIT:
| 539 { n
540 SubStateXYHomingWaitLimitFunction() ;
541 break;
542 }
543//
544 // Move to index
545//
546 case XY HOME_MOVE_TO_INDEX:
547 {
548 SubStateXYHomingMoveToIndexFunction();
549 break;
550 } [
551// 3
552// Wait for index
553//
554 case XY_HOME_WAIT_ TO_INDEX:
555 {
556 SubStateXYHomingWaitIndexFunction();
557 break;
558 }
558//
560// The default case. Should not happen, the user can implement erroxr har‘.dling.
Se1//
S62 default:
563 {
564 break;
565 }
566 } [<]
< | i v
o® Writable Smartinsert | 383:1 s @B m

Finally, reaching the lower level functions, which create motions, wait for end of motions, etc., we
find the function (as an example): SubStateXYHomingMoveToLimitFunction().

Please note how this function creates motion (and not waiting for end of motion or any other "wait")
and changes the sub-state immediately, so that in the next cycle, the XY_HOME_WAIT_TO_LIMIT
state is detected, and the SubStateXYHomingWaitLimitFunction() is reached.

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

File Edit Source Refactor Navigate Search Project GMAS Run Logger Window Help

N-ERel B ® A-i%-D-smewie O WRemotesyn. % Debug
- Mr=0 :EE];'EEI“.: ¥~ e -
Sal C _._] Sampleh =0
= ! .
€62 -
B ess ==
€E4 PFunction: SubStateXYHomingWaitlimitFunction()
€65 Input argquments: None.
€66 Output arguments: None.
€67 EReturned value: None.
€68 Version: Version 1.00
Updated: 06/12/2010
Modificaticns: N/&
Description:

Waits for X and Y limits and only then change to the next sub-stats.

€80 // Changing to the next sub-state only if both limits are activated.

2 // MNote that a faster implementation could be to put here the code ofsub-state XY_HCME
3// Thi= means that 1f X and ¥ lim:ts are detected, we can start ths motion to the inde
84 // waiting for the next timer event.

One can also wonder if we shoudl not firat wait for and of motion befora maving to
This is also correct.

However, this is only a Sample project to demonstrate programming guidelines and co

2o we preferred to keep it as =imple as possible.

if (giXReverseLimit && giYReverseLimit)

{
giSubStatel = XY HCME_MOVE_TO_INDEX;
}

Function: SubStateXYHomingMoveToIndexFunction ()
Input arguments: None.

Output argumentsa: Hone .

Eeturred value: None.

Version: Version 1.00

Updated: 0e/12/2010

Modificaticna: N/A

[(]

| Writable Smart Insert | 662:1

Within the SubStateXYHomingWaitLimitFunction(), you can see how the limits statuses are checke
(assuming that the limits statuses are read and that giXReverseLimit and giYReverseLimit variables
are set/cleared accordingly within ReadAlllnputData() at the beginning of the timer cycle).

If the limits are not reached, the sub-state is not changed and the function ends (no "delays", no
"waits"). It will be called again at the next timer cycle (20ms in this example) and so on. Once both
limits are set, the sub-state is modified to the next state and the function ends. This will force the
sub-states machine to execute the next sub-state (MOVE_TO_INDEX) in the next timer cycle.

All functions are as short as possible. Waiting for an event is not a part of a function, but is
implemented as a state (WAIT_TO_LIMIT for example). According to the structure of the states

d

machine code, this is called every timer cycle, to check if the wait condition is satisfied. Once it is, the

state value is changed to the next state .

G-MAS — Gold Maestro Software User’s Manual Software User Manual
3-44

XXXXXXXXXXXX(0.01)

This actually ends the Sample.c code. It includes some more states functions, but they are all written
according to the above guidelines.

The Sample.h is shown in the two diagrams below. Note the functions prototyping (general functions
and states functions, as well as the definition of constants (and the format used, such as: XY_HOME)
to replace each number in the code.

File Edit Source Refactor Mavigate Search Project GMAS Run Logger Window Help

DO-ER&| & ‘@ &K~ 3 O Savetofile [8 RemoteSyst.. 5 Debuy [C/ces
5(3&9 ¥ Eﬂiﬁfﬂ m]é Yy~ o~ -

>

2

1l (@ Sample.c =0

=3
I 1/
Project: Sample
File: Sample.h
Author: Sapir Eyal

Date: 06 December 2010
WVersion: 1.00

=~ o o W

8

S Description:
10
11 Main header file for the Sample project.
12 ==========s==================
13/
14
15 /%
1f ======s===sss=ss=ssssssss=s====
17 Project general functions prototypes
18 ===========o
15/
20void MainInit ();
21l wvoid MachineSequences () ;
22 void MainClose () ;
22void MachineSequencesInit();
24void EnableMachineSecquencesTimer (int TimerCycle);
25 void BackgroundProcesses();
26 void MachineSecquencesClose() ;
27 void MachineSequencesTimex();
28 void ReadAllInputData ();
29void WriteAllOutputData() ;
30 /=
31 ====
32 States functions
33 ====
34 %)
35 void StateXYHomingFunction();
26 void SubStateXYHomingMoveToLimitFunction();
37 void SubStateXYHomingWaitLimitFunction();
28 void SubStateXYHomingMoveToIndexFunction();
39void SubStateXYHomingWaitIndexFunction();
40
41 void StateXYMoveFunction();
42void SubStateXYMoveBeginFunction();
43 void SubStateXYMoveWaitEndMotionFunction() ;
44
45 void StateXYDefaultFunction() ;
46 />
47 === ============ -

< mn] r

: e |Writable Smart Insert 1:2 : - = =

Together with the next diagram...

G-MAS — Gold Maestro Software User’s Manual

Software User Manual

XXXXXXXXXXXX(0.01)

3-45

Fiie Edit Source Refactor GMIAS
NrER el R
&g - Qe

Navigate Search Project
I} ij‘ﬁ' O~ | Savetofile
5§‘v§|v‘: S -

Run Logger Window Heip

[T8 Remote Syst.. ¥ Debug ([C/C++ |

' L&) Sample.c

32 States functions

33
34 %/

35 void
36 void
37 void
38 void

StateXYHomingFunction() ;
SubStateXYHomingMoveToLimitFunction() ;
SubStateXYHomingWaitLimitFunetion() ;
SubStateXYHomingMoveToIndexFunction() ;
SubStateXYHomingWaitIndexFunection();

41 void
42 wvoid
43 void
44

45 void
46 /4|

StateXYMoveFunction () ;
SubStateXYMoveBeginFunction() ;
SubsStateXYMoveWaitEndMotionFunetion() ;

StateX¥YDefaultFunction();

47

48 General constants

49

S50/
51 #define
52 #define
53 /%
54

FALSE
TRUE

55 Project constants

56
5T %/
58 #define
59 #define
60 /*

100000
20

SLEEP_TIME
TIMER CYCLE

Sleep time of the backround idle loop, in

Cyecle time of the main segquences timer, i

6l

62 States Machines constants

63

64 v/

65 #define
66 #define
67

68 #define
55 #define
70 #define
71 #define
72 #define
73

74 #define
75 #define
T& #define
77

78

IDLE
FIR3T_SUB_STATE

XY_HOME
XY _HOME_MOVE_TO_LIMIT
XY_HOME_WAIT_TO_LIMIT
XY HOME MOVE_TO_INDEX
XY_HOME_WAIT_TO_INDEX

XY_MOVE
XY_MOVE_BEGIN_MOTION
XY_MOVE_WAIT_END_ MOTION

The first sub-state value of all sub-stat

Main state machine value for HOME, and it

Main state machine value for XY MOVE, and

| Writable

| Smart Insert | 46:3

This actually completes the review of the Sample project's code. The SampleWrapper.c and

SampleWrapper.h files are skeleton, almost empty files, to be filled with functions and definitions as

may be required for an actual application (you will find one later on within this manual).

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

Chapter 4: G-MAS software structure and interfaces

The following figure presents the software structure of a G-MAS based motion control system.

GMAS Based Motion Control System

(DevelopmentlHost PC

GMAS Programming Setup, Configuration, Tuning Application
] LI

User
Projects)
. ¢, .hFiles
.gexe Files [GMAS FB Library] HMi or PLC
N _ J
' MODBUS
TCP/IP TCP/IP over TCP/IP
4 N\
/ % N

GMAS FB

MODBUS
Registers
Memory

Startup File Gold Maestro Firmware
g

\Gold Maestro (Linux OS)

EtherCAT or CAN Bus v

. A \ A
Y
Drives, e
1/O modules | Module

-

4-46

G-MAS — Gold Maestro Software User’s Manual Software User Manual
4-47

XXXXXXXXXXXX(0.01)

‘ Note:

Two additional software modules, that are not included in the above diagram, are used with the
G-MAS. These are the KPA Studio and a Terminal for IP configuration over the TCP/IP. These two
modules were omitted from the above figure to keep it as simple as possible and are described later
within this chapter.

The overall motion control system is divided into three main layers:

e Host.

e G-MAS.

e Drives (and optionally also I/O controllers or any other valid device on the drive’s network).

The following chapters describe the software modules and the interfaces of each of the above layers.

4.1. The Host
The Host can be a PC Computer, a HMI, or PLC.

During machine operation, the Host (in this case, it Development/Host PO

Application

can be a PC computer or a PLC or HMI) typically

Host Application

User Application
re

executes the application program developed by the
user.

This application program performs the top level
machine sequences and optionally also other tasks,

that are not closely related to the axes motion

Aj

GMAS FB Library

sequences, such as user interfaces, image analysis, HAMl or PLC

barcode interfaces etc., as maybe required for the

‘“.‘m
e I 5,

machine.

In the situation where the host is a PC computer,
Elmo provides the G-MAS Function block library, a
static library with all function blocks to access via TCP/IP, the various functionalities of the G-MAS.
The user links this library with his application program and as a result can easily access the G-MAS
using any of the functions included in the library.

Where the host is based on a PLC or a HMI (EImo does not provide any library for these devices), the
user should use one of the G-MAS supported standard protocols via TCP/IP (currently Elmo supports
MODBUS over TCP/IP).

During the development or maintenance phases, the Host (in this case, a PC computer) runs the
special development and maintenance/configuration software modules that are supplied by EImo to
support the configuration/setup/programming of the G-MAS and the drives.

The EAS — ElImo Application Studio software is an all-in-one environment that supports all the tasks
involved with the system configuration, setup, tuning, motions and programming. It is used both, for

G-MAS — Gold Maestro Software User’s Manual Software User Manual
4-48

XXXXXXXXXXXX(0.01)

the overall system (configuration), the G-MAS (setup, multi-axis motions) and the end units — the
drives (configuration, setup, tuning wizards, motions and programming).

The EAS uses the same static library
(G-MAS Function Block Library) that is

used by the application program to access

velopment/Host PC

the G-MAS functionality over the TCP/IP. pment/ _
GMAS Programming Setup, Configuration, Tuning

f A f h |
While the EAS is an all-in-one
environment, there is one task that is
handled using a separate software
module, Eclipse.

A .
Eclipse is used to develop and debug User
C and C++ Programs for the G-MAS. User
Projects
Elmo decided to use the market-leading €, hFiles [—Fﬁ
. . . .gexe Files GMAS FB Library

Eclipse environment (and not to integrate :

this task to the EAS) in order to provide its
user with the best programming

experience and minimal development
time.

Using Eclipse, the user can write C and

C++ programs (applications) for the G-MAS. The user’s projects are saved in the computer’s disk.
Using this application, the user can also compile the project, link it with EImo’s library and create an
executable file for the G-MAS (*.gexe). In addition, while remaining in the application, the user can
easily download the new executable file to the G-MAS, where it can be executed and/or debugged,
all from within the Eclipse environment.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
4-49

XXXXXXXXXXXX(0.01)

4.2. The G-MAS

The G-MAS is a Network Multi Axis Motion Controller. It obtains high-level motion or operational
mode requests from the Host (over TCP/IP), and manages the actual machine’s motions and
sequences, accordingly. The G-MAS accesses the end-units (drives, I/O controllers, etc.) over the
device network, that can be CAN (using CAN Open standard protocols) or EtherCAT (using CANopen
over EtherCAT — CoE — standard protocols).

The G-MAS is an embedded computer
that runs the LINUX operating system
and at least one software process: the
built-in G-MAS firmware that is
provided by EImo as part of the

G-MAS. It automatically runs the
G-MAS firmware when power ON,
which is responsible for the following

tasks: Gold Maestro Firmware

e TCP/IP communication with the
Host.

Gold Maestro (Linux OS)

EtreCAT =-TAMN 3

e Process-to-Process
communication with the optional
User Application program running
at the G-MAS (see below).

e Management of all calls for
Function Blocks (see below) that
may arrive from the Host (over
the TCP/IP) and/or from the User Application program (running at the G-MAS itself).

Understanding the structure of the Multi-Axis Motion Control core is critical for optimal operation of
the G-MAS. Please refer to the dedicated section below to learn details of the Multi-Axis Motion
Control core.

e Multi-Axis Motion Control. This is the core of the G-MAS firmware, which is responsible to
perform all trajectories, control, events and synchronization algorithms to create a multi-axis
motion controller.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
4-50

XXXXXXXXXXXX(0.01)

Understanding the structure of the Multi-Axis Motion Control core is critical for optimal operation of
the G-MAS. Please refer to the dedicated section below to learn details of the Multi-Axis Motion
Control core.

e Management of the device network (CAN or EtherCAT) and communication with the end-units.

4.2.1. Function Blocks Interfaces

Function Blocks refer to the library of interface functions that are available for the users through the
library supplied by EImo: EImo’s G-MAS Function Block Library. The same set of functions are
available for the Host programmer (who is developing the Host Application, see above) and for the
G-MAS programmer (who is developing the User Application for the G-MAS, see below). The
Function Blocks’ library includes functions to create motions, manage the device network, create and
manager events, etc.

Please refer to the G-MAS Administrative and Motion APl User’s Manual for a detailed description of
each of the available Function Blocks.

Here is some brief information about the Function Block interfaces:
e The API consists of a list of functions with input and output values.
e Forinstance - the MC_MoveAbsolute is as follows:

int MMC_MoveAbsoluteCmd(Connection handle, Axis Reference, MMC_MOVEABSOLUTE_IN
structure, MMC_MOVEABSOLUTE_OUT* structure);

Where:

e All functions include a connection handle.

e Motion Functions include a reference to an axis (Group or single axis). Obtained by GetAxisRef().
e All functions include an ‘In” structure and an ‘Out’ structure.

e The ‘In” structure will include information regarding the motion.

e The ‘Out’ structure will include information regarding whether the function call succeeded or
not.

e If the API function is to return data (such as ReadActualPosition()) —then the ‘Out’ structure will
of course include the designated information.

e All function calls return immediately. This does not mean that the functionality is complete.
Function calls sometimes initiate a background sequence (MoveAbsolute() for instance ...).

e All motion function blocks return a status register, which reflects the function CALL only. If an
error occurs by sending incorrect parameters(range) / state machine — the function block call
returns an error.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
4-51

XXXXXXXXXXXX(0.01)

e This is not the case if an error occurred during motion. The axis status is to be read by calling the
ReadAxis() Status API. Also to obtain the PLCopen SMachine status.

4.2.2. Multi-Axis Motion Control Core Structure

e PLCopen defines an axis reference to be used for each motion function.

e The AxisREF is the correlation between the user defined resource file axis name to the actual
axis.

e Instead of sending the axis name to each function, the AxisREF is sent.

e The AxisREF is obtained via the GetAxisByNameCmd() API function. This function is to be called
once per axis.

MC MoveAbsolute

AXIS REF _.A_xis_ e e e - - f;x_m_ AXIS REF
BOOL ___ | Execute Done | BOOL
REAL, ___ | Position Busy | BOOL
REAL | Velocity Active | BOOL
REAL] Acceleration CommandAborted [BOOL
REAL — Deceleration Error _ BOOL
REAL ___] Jerk ErrorlD | WORD
MC Direction ___|] Direction
MC BufferMode ___| BufferMode

e The user program, either Internal or Remote, can receive events that occur in the G-MAS:
= Emergencies sent from the drive.
= PDO and PDO receive
= General system failures
= On Motion End
= On Heartbeat Error
= Emit
e These events must be preregistered per connection.

e Aninternal connection and a remote connection may both receive an event stating that an
emergency occurred in Drive #N

e Mirror memory:
= The DS402 state machine per axis is handled in the nodes cycle time.

= Depending on the axis Mode Of Operation and user configuration, PDO’s are sent and
received.

= PDO’s that are received, are automatically updated in a memory variable.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
4-52

XXXXXXXXXXXX(0.01)

= This variable is actually the mirror variable of the drive, for the current cycle.

= When the user, from an Internal /_I’\
or Remote connection, requests TcPip

P

the value of the variable, the
mirror value is returned. No
actual Communication request
to the drive is performed (as a
result, the response time to the
request is very fast and the
communication, as well as the
variables values, are always [Startup File]
synchronized),

old Maestro (Linux OS
= This is how PLCs work. The NG\ ()

information is valid for the last

cycle time.
The G-MAS can optionally execute a second process. This is the User Application program.

The User Application is a C program that is developed by the user. The development process is
performed using a Host PC and the Eclipse environment (see above about the Eclipse environment).

A machine can work without having a User Application running on the G-MAS. In these
circumstances, the Host will manage the machine sequences and motions and will send commands
to the G-MAS (over TCP/IP) accordingly.

However, most applications are based on a User Application program at the PC, since such a program
reduces the computational load of the Host, reduces the TCP/IP network load, and includes enabling
modular implementation of the overall machine software (Host manages user interfaces, image
analysis, top level machine sequences; while the G-MAS manages axis related sequences and
motions).

Using Eclipse, the User Application is developed and finally its executable file (*.gexe) is downloaded
to the FLASH memory of the G-MAS (into an area dedicated for the User). During the download, the
user can define that the application will run automatically at power ON (a suitable Startup File will be
created by the Eclipse).

The user can download as many executable files as there is space within the FLASH memory.
Typically, a default User Application program is executed upon power ON, using the Startup File,
which is a Linux script file which is automatically executed upon power on or reset.

While typically most applications will use only one executable file (*.gexe) which will manage the
application, the user can create any conditional execution of a set of executable files, using the
Startup script file (an executable file can get arguments and can return a value). This, however,
requires some knowledge of Linux script files.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
4-53

XXXXXXXXXXXX(0.01)

The User Application
program, when executed,
communicates with the

G-MAS Firmware, using the
G-MAS Function Block
Library, to create motions,

£
v m
gE
=|
9

control events, read statuses,

communicate with the device

network units and any task

that is available through this
library of G-MAS Function
Blocks.

A typical G-MAS User Application program also needs to communicate with the Host (and/or the
Host needs to communicate with it). For example, the Host would like to transfer the required mode
of operation, motion commands, etc., or to receive machine/motion statuses, etc.

Such a communication is typically implemented using the MODBUS over TCP/IP communication. As
shown in the figure above, the G-MAS Firmware includes a memory area that is dedicated to
MODBUS registers, and organized according to the MODBUS standard. The Host (a PC or a PLC/HMI)
can access this memory area using standard MODBUS over TCP/IP which is supported by most of the
Host devices. The User Application program can access this memory area using dedicated functions
included in the G-MAS Function Block Library. As a result, this memory area is actually a shared
memory of the Host and the User Application program and they can communicate over it.

It is the user’s responsibility to define the communication items (what is to be communicated, in
what areas of the memory, and what the expected values are) and to implement this communication
both at the Host side and at the User Application. ElImo only provides the means to access this shared
memory by the Host and by the User Application program. You will find more about communicating
over the MODBUS memory within the relevant example later in this manual.

It is important to note that the G-MAS supports the execution of no more than one User Application
at any given time. The current version of the G-MAS firmware does not protect the system from such
cases. As a result, executing two or more User Applications simultaneously will have unexpected
results and should be avoided by the user.

Finally, it is important to note that a User Application program can use the FLASH memory of the
G-MAS (only the space allocated for the user). The Application Program can open files (e.g. files with
parameters), create files (e.g. log files), write to files, etc., just as a C program running on a PC can
access files on a Hard Disk. The user should take care for the response time when accessing the
FLASH for writing. A user can copy files (such as parameters files) from the PC to the G-MAS Flash
memory using suitable utilities.

G-MAS — Gold Maestro Software User’s Manual Software User Manual
4-54

XXXXXXXXXXXX(0.01)

4.3. The device network

\Gold Maestro (Linux OS)

FrherCAT o CAM S 1

i [}
Drives, 1o
/O modules e

In general, the overall motion control system is designed to move motors and, if necessary, to

control the machine’s 1/Os.

Motors and I/Os are interfaced to the system using Servo Drives and 1/O controllers (only if required,
as each of the Servo Drives supports a number of I/Os for general purposes).

These end-units (servo drives, |/Os controllers, network encoders, etc.) are connected to the G-MAS
over a Device Network. The G-MAS supports one of two Device Networks: CAN or EtherCAT.

The G-MAS Firmware is responsible to manage the Device Network and to perform all required
communications in a synchronous manner and according to the standards of this network. Generally
speaking, the user does not need to know the details of the device network as all the details are
automatically handled by the G-MAS.

The exact list of protocols supported by each of these two networks, as well as the specifications of
each protocol (minimal update time, delays, etc.) is included within the G-MAS User’s Manual.

4.4. Additional tools

The above-described structure of a G-MAS based system is a simplified structure. It does not include
some additional software tools that may be required for setup and configuration of the G-MAS.

This chapter describes these additional tools.

4.4.1. KPA Studio

The G-MAS EtherCAT Configuration is used to initially scan the EtherCAT bus and locate the
controllers on the bus, configure the Input / Output process cycle parameters, check the EtherCAT
bus (CRC errors) and download the EtherCAT configuration resource file to the G-MAS.

4.4.2, IP Configuration over USB
TBD

G-MAS — Gold Maestro Software User’s Manual Software User Manual
5-55

XXXXXXXXXXXX(0.01)

Chapter 5: The XYZ robot example

TBD

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

Chapter 6: Further Programming Examples

6-56

G-MAS — Gold Maestro Software User’s Manual Software User Manual

XXXXXXXXXXXX(0.01)

Chapter 7: PC Software Installation and how to use
TBD

7-57

	About the G-MAS and this manual
	What is the G-MAS
	1.2. G-MAS Features
	1.3. What the Document Covers and How to Use It

	Chapter 2: Just Before Starting Up
	2.1. Preparing Your Computer
	2.2. Using the Manual’s Examples

	Chapter 3: Programming Practices and Guidelines
	3.1. Projects and files
	3.1.1. Project Location and Naming
	3.1.2. Project’s Files
	3.1.3. Project’s Description Files

	3.2. Functions, Variables and Constants
	3.3. C and Header Files
	3.4. Wrapper functions
	3.4.1. Hiding Complex and/or Not Important Code Segments
	3.4.2. Hiding Repeated Segments of Code
	3.4.3. Providing Easier Interfaces

	3.5. Implementing machine sequences
	3.5.1. The main() program structure
	3.5.2. The MachineSequences() Function
	3.5.3. The MachineSequencesTimer() function
	giStateN
	giPrevStateN
	giSubStateN

	3.6. Handling errors
	3.7. Sample code

	Chapter 4: G-MAS software structure and interfaces
	4.1. The Host
	4.2. The G-MAS
	4.2.1. Function Blocks Interfaces
	4.2.2. Multi-Axis Motion Control Core Structure

	4.3. The device network
	4.4. Additional tools
	4.4.1. KPA Studio
	4.4.2. IP Configuration over USB

	Chapter 5: The XYZ robot example
	Chapter 6: Further Programming Examples
	Chapter 7: PC Software Installation and how to use

